Cross-section of ${}^{8}\text{Li}(\alpha, n)^{11}\text{B}$: Inhomogeneous Big Bang nucleosynthesis

S. Cherubini¹, P. Figuera², A. Musumarra^{2,3}, C. Agodi², R. Alba², L. Calabretta², L. Cosentino², A. Del Zoppo², A. Di Pietro², M. La Cognata², L. Lamia², L. Pappalardo², M.G. Pellegriti^{2,3}, R.G. Pizzone², A. Rinollo^{2,3}, C. Rolfs^{1,a}, S. Romano^{2,3}, C. Spitaleri^{2,3}, F. Strieder¹, S. Tudisco^{2,3}, and A. Tumino^{2,3}

¹ Institut für Physik mit Ionenstrahlen, Ruhr-Universität Bochum, Bochum, Germany

 $^{2}\,$ Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania, Italy

³ Dipartimento di Metodologie Fisiche e Chimiche per l'Ingegneria, Università di Catania, Catania, Italy

Received: 21 October 2003 / Revised version: 27 November 2003 / Published online: 15 April 2004 – © Società Italiana di Fisica / Springer-Verlag 2004 Communicated by S. Kubono

Abstract. The cross-section of ${}^{8}\text{Li}(\alpha, n)^{11}\text{B}$ has been measured at $E_{cm} = 1.25$ MeV to be $\sigma(E) = 500$ mb using novel techniques, *i.e.* a ${}^{8}\text{Li}$ radioactive ion beam produced at the tandem in Catania in combination with a ${}^{4}\text{He}$ gas cell and a 4π neutron detector. The value is in fair agreement with previous work strengthening the model of inhomogeneous Big Bang nucleosynthesis.

PACS. 25.60.-t Reactions induced by unstable nuclei – 95.30.-k Fundamental aspects of astrophysics

1 Introduction

The remarkable agreement between the predictions of the primordial nucleosynthesis calculations with the observed primordial abundances of the light nuclides ²H, ³He, ⁴He and ⁷Li is considered a major triumph of the standard Big Bang model (SBBM) [1]. The SBBM assumes that during the phase of primordial nucleosynthesis the universe had a homogeneous density distribution. In view of the clumpsiness of the universe on a large scale, theoretical studies (see [2-4] and references therein) have taken into account possible inhomogeneities in baryon density arising from the quark-hadron phase transition of the universe. In these studies the universe is separated into two decoupled regions, one of which is a high-density proton-rich region and the other a low-density neutron-rich region. It is found that the observed abundances of the primordial nuclides can be explained equally well as in the SBBM, with the possible exception of ⁷Li (see, however, [4]). A key prediction of the inhomogeneous Big Bang models (IBBM) is the production of significant amounts of $A \ge 12$ nuclides comparable to the abundances seen in the oldest metalpoor stars. Since the SBBM produces essentially zero metals, the presence of a "cosmic floor" of heavy elements in metal-poor stars would be a strong indicator of inhomogeneity at the time of primordial nucleosynthesis.

A key reaction in the inhomogenous nucleosynthesis is ${}^{8}\text{Li}(\alpha,n)^{11}\text{B}$ (Q = 6.63 MeV). The thermal energy re-

gion is from 0.3 to 0.8 MeV for the relevant Big Bang temperature of 1×10^9 K. Thus, the cross-section $\sigma(E)$ of this reaction must be known with high accuracy in this energy region. The cross-section was inferred for the first time [5] using the inverse reaction ${}^{11}B(n,\alpha)^{8}Li$ with data over a wide range of energies including the thermal region. However, this technique measures only the yield of ⁸Li $(\alpha, n)^{11}$ B to the ¹¹B ground state, while the reaction can proceed also to excited bound states of ¹¹B. Thus, the inverse reaction measured a lower limit of $\sigma(E)$. A direct $\sigma(E)$ measurement of ⁸Li(α, n)¹¹B requires the availability of a radioactive ⁸Li ion beam $(T_{1/2}(^{8}\text{Li}) = 0.84 \text{ s}).$ Such experiments have been carried out [6-8]: the data with relatively large errors suggest an increase in crosssection by about a factor 5 compared to that reported in [5]. Indirect methods as well as theory did not improve the situation [9]: e.g., a predicted enhancement factor of 1.3 [10] and 3.3 [11]. We report on a $\sigma(E)$ measurement at $E_{\rm cm} = 1.25$ MeV using a new experimental approach at the tandem accelerator of the Laboratori Nazionali del Sud in Catania.

2 Setup and procedures

The setup is shown schematically in fig. 1. Briefly, the 15 MV tandem in Catania provided a ⁷Li beam of $E_{\text{lab}} = 24.6 \text{ MeV}$ with a current of about 100 pnA. The beam was focused by a quadrupole doublet (QD1) onto a deuterium

^a e-mail: rolfs@nucleus.ep3.ruhr-uni-bochum.de

Fig. 1. Schematic diagram of the experimental setup at Catania.

solid target, where ⁸Li nuclides were produced via the reaction $d({}^{7}Li,p){}^{8}Li$ (Q = -0.19 MeV). The ⁸Li nuclides and the ⁷Li projectiles left the solid target predominantly in the 3⁺ charge state. The ⁸Li nuclides were then momentum-filtered from the intense ⁷Li primary beam by a 66° magnet in combination with a quadrupole doublet (QD2) and focused onto a ⁴He gas cell by 2 quadrupole doublets (QD3, QD4). In the gas cell, the ⁴He(⁸Li,n)^{11}B reaction was initiated and identified by the produced neutrons.

2.1 ⁸Li production rate

The primary target was a 1 mg/cm² thick CD₂ foil sandwiched between carbon layers of $30 \,\mu\text{g/cm}^2$ thickness. After this target, the ⁷Li ion beam had an energy of 23.7 MeV. With an assumed cross-section of 10 mb for $d(^7\text{Li},\text{p})^8\text{Li}$ in the backward kinematic solution (sect. 2.2), one arrived at a ⁸Li production rate of 4×10^5 nuclides/s. With a measured angle acceptance of 40 msr of the 66° magnet, the intensity of the ⁸Li beam was reduced to 1×10^3 nuclides/s, consistent with observation (sect. 2.2). Beyond the magnet, the ⁸Li nuclides (backward kinematic solution) had an energy $E_{\text{lab}}(^8\text{Li}) = 10.3 \pm 0.4$ MeV, where the quoted uncertainty reflects the momentum acceptance of the magnet.

2.2 ⁸Li beam purification

Since the forward kinematic solution in the ⁸Li production kinematics was in momentum p too close to that of the ⁷Li beam $(p(^{8}\text{Li})/p(^{7}\text{Li}) = 0.98)$, we used the backward kinematic solution $(p(^{8}\text{Li})/p(^{7}\text{Li}) = 0.66)$ for the momentumfiltering in the magnet. In a first step, a ⁷Li beam emerging from the primary target with the same rigidity as the

Fig. 2. TOF spectrum between the two MCPs (5 m distance) showing the ⁸Li nuclides and the ⁷Li leaky beam. Events in the ⁸Li peak as well as events just outside this peak (representing essentially ⁷Li background events) were used to search for correlated coincidence events in the neutron detector.

⁸Li nuclides was produced and tuned as a "pilot beam" through the beam line up to the gas cell using quartzes and Faraday cups as monitors, where the last quartz and the last Faraday cup were installed at a respective distance of 20 and 50 cm from the entrance foil of the gas cell. In the second step, the 24.6 MeV ⁷Li primary beam was used and the associated ⁸Li nuclides observed in the beam line using 2 micro-channel plate detectors (MCP1 and MCP2, provided by Hamamatsu and Burle). The upstream MCP had a 40 mm diameter active area (with a 0.8 micron thick mylar foil) in order to catch a large part of the ⁸Li nuclides, while the downstream MCP had a 25 mm diameter active area (with a 30 $\mu g/cm^2$ thick C foil), which was smaller than the 40 mm diameter of the downstream gas cell (sect. 2.3); the MCP2 was at a distance of 20 cm from the gas cell. With a 5 m distance between the MCPs, the ⁸Li nuclides could be clearly identified by their time of flight (TOF) between the two MCPs and resolved well from the leaky ⁷Li projectiles (fig. 2). The ⁸Li rate was used in a final tuning of the elements of the beam line; it turned out that the optimum parameters of the beam optical elements were nearly identical to the settings found with the ⁷Li pilot beam. The measured ⁸Li rate was on average about 150 nuclides/s consistent with expectation in view of the MCP restrictions (50% detection efficiency via TOF and 30% angle acceptance). The TOF spectrum allowed to measure absolutely the ⁸Li energy which was consistent with the expected value of 10.3 MeV (sect. 2.1). The ⁸Li energy was also verified by inserting a ΔE -E telescope (Si detectors) close to and upstream of MCP2. The ΔE -E spectrum showed that no significant contaminant

projectiles were located close to or within the ⁸Li peak in fig. 2 (contamination less than 1% of the ⁸Li peak).

2.3 ⁴He gas cell

The gas cell had a 4 cm diameter, a 20 cm length, and an entrance window consisting of a 5 μ m thick Ni foil, which could sustain a ⁴He gas pressure of 150 mbar (cleanliness of the ⁴He gas = 99.9999%). A Si detector (100 mm² active area) was placed at the end of the gas cell to measure the energy loss of the ⁸Li nuclides in the Ni foil and in the ⁴He gas. For the Ni foil alone (no gas), the final ⁸Li energy of 4.80 MeV was consistent within 1% with that calculated for the foil thickness. This energy is below the 2.06 MeV threshold of the ⁸Li \rightarrow ⁷Li + n breakup as well as the thresholds of ⁸Li(α ,2n)¹⁰B and ⁸Li(α ,np)¹⁰Be. Including the ⁴He gas, the energy at the end of the gas cell (= 2.70 MeV) was also consistent with energy loss calculations. The mean ⁸Li energy within the gas cell was therefore $E_{\rm lab}(^{8}{\rm Li}) = 3.75$ MeV or $E_{\rm cm} = 1.25$ MeV.

2.4 Neutron detection

The neutron detection was carried out with a 4π detector consisting of 12 ³He-filled proportional counters embedded in a polyethylene moderator; the detector was provided by Caltech [12,13]. The moderator was in the form of a cube, 40 cm on a side, with an $11 \text{ cm} \times 11 \text{ cm}$ channel through the center, for insertion of the ⁴He gas cell and the beam pipe. The neutrons created in the gas cell were moderated in the polyethylene material. Surrounding the 40 cm cube of polyethylene was a 4π layer of Cd shielding (0.6 mm thick), which in turn was surrounded by a 4π passive layer of polyethylene and borated paraffin, approximately 10 cm thick. This passive shielding served to absorb externally created neutrons. The 12 ³He proportional counters were positioned about the beam pipe channel in a circle of about 12 cm radius. Each counter had a 3 cm diameter and a 46 cm length and was characterised by a 100% detection efficiency for thermalised neutrons. The cosmic background rate in the detector was observed to be 2 events/min, while the beam-induced background was about 12 events/min arising predominantly from the ⁷Li primary beam interacting with the vacuum pipe walls of the 66° magnet. Using a calibrated ²⁵²Cf source, the neutron detection efficiency was found to be $\varepsilon = 0.20 \pm 0.01$ (for a mean neutron energy $E_n = 2.35$ MeV) consistent with previous work [12]. Since the neutrons emitted in ${}^{4}\text{He}({}^{8}\text{Li},n){}^{11}\text{B}$ at $E_{\rm cm} = 1.25$ MeV involve energies. gies up to about 8 MeV, we have adopted a mean value of $\varepsilon = 0.19 \pm 0.03$ according to Monte Carlo calculations [12].

The neutrons were moderated and absorbed in the detector with an observed "die-away" time of $\tau = \lambda^{-1} =$ $86 \pm 2 \,\mu$ s. A gate set on the ⁸Li events in the TOF spectrum (fig. 2) started a time-to-amplitude (TAC) converter, whereby the stop signals of the TAC (selected time range = 1 ms) were provided by the neutron detector (*i.e.* the

Fig. 3. TAC spectra (time range = 1 ms) for coincidence events between incident projectiles and neutrons are shown as a function of $\langle \lambda \exp(-\lambda t) \rangle$: (a) for ⁸Li projectiles with ⁴He gas, (b) for ⁸Li projectiles without gas, (c) for ⁷Li projectiles with ⁴He gas. The solid curve in (a) represents a linear best fit to the data using $\Delta N(t)/\Delta t = N_{\rm BG} + N_0\lambda \exp(-\lambda t)$, where $N_{\rm BG}$ (dashed line) is the time-independent background rate consistent with that observed in (b) and (c) and N_0 is the total number of time-correlated events. The absolute value of the background contribution in (b) is a factor-2 lower than in (a) and (c) due to a factor-2 lower current in the primary beam.

events from the logic or of the 12 ³He proportional counters). If neutrons were correlated with the ⁸Li beam, one expected a coincidence time distribution $\Delta N(t)/\Delta t$ declining exponentially with time (or rising linearly with $\exp(-\lambda t)$) according to

$$\Delta N(t)/\Delta t = N_{\rm BG} + N_0 \lambda \exp(-\lambda t), \qquad (1)$$

where $N_{\rm BG}$ is the time-independent background contribution and N_0 is the total number of time-correlated events.

Figure 3 illustrates the results of such correlations, where data are shown versus the corresponding mean values of $\lambda \exp(-\lambda t)$: (a) a window set on the ⁸Li peak and ⁴He gas in the cell, (b) a window set on the ⁸Li peak and no gas in the cell, and (c) a window set outside and on both sides of the ⁸Li peak (*i.e.* on ⁷Li background events) and ⁴He gas in the cell. Case (c) shows no correlated events and is consistent with the "background contribution" in (a) for long decay times. Similarly, case (b) shows no correlated events, while case (a) does show such events: the results demonstrate that correlated neutron events arise only from the interaction of the ⁸Li beam with the ⁴He gas and thus from the reaction ⁴He(⁸Li,n)¹¹B. The total number of time-correlated neutron events is $N_0 = 122 \pm 41$ (statistical error).

3 Result

The correlated neutron yield N_0 is related to the number of incident ⁸Li projectiles $N_{\rm Li}$ (as observed by the TOF), the number of ⁴He target nuclides $N_{\rm He}$ (derived from the gas pressure and length of the gas cell), the neutron detection efficiency ε , and the cross-section σ by the equation

$$N_0 = N_{\rm Li} N_{\rm He} \varepsilon \,\sigma \,. \tag{2}$$

The result is $\sigma = 500 \pm 170$ (statistic) ± 70 (systematic) mb at a mean energy $E_{\rm cm} = 1.25$ MeV, consistent with previous work within experimental uncertainties [6–8]. The present work with an enhancement factor of 12 compared to the results of the inverse reaction [5] strengthens the calculations of inhomogeneous Big Bang nucleosynthesis.

It should be noted that the present work is the first result of a radioactive ion beam experiment relevant to nuclear astrophysics carried out at Catania. Within the future EXCYT project at Catania [14], a ⁸Li ion beam will be available in 2004 with an intensity several orders of magnitude higher than that obtained in the present experiment. With such a beam current, data with high precision can be obtained with the present setup over the full astrophysical energy range of ⁴He(⁸Li,n)¹¹B.

The authors thank R.W. Kavanagh (Caltech) for the provision of the neutron detector and other advice given to the experiment. This work is supported in part by DFG (Ro429/37) and BMBF (05CL1PC1).

References

- A.M. Boesgaard, G. Steigman, Annu. Rev. Astron. Astrophys. 23, 319 (1985).
- R.A. Malaney, W.A. Fowler, Astrophys. J. **333**, 14 (1988); Astrophys. J. Lett. **345**, L5 (1989).
- 3. T. Kajino, R.N. Boyd, Astrophys. J. 359, 267 (1990).
- K. Jademzik, G.M. Fuller, H.J. Mathews, T. Kajino, Astrophys. J. 422, 423 (1994).
- T. Paradellis, S. Kossionides, G. Doukellis, X. Aslanoglou, P. Assimakopoulos, A. Pakau, C. Rolfs, K. Langanke, Z. Phys. A **337**, 211 (1990).
- R.N. Boyd, I. Tanihata, N. Inabe, T. Kubo, T. Nakagawa, T. Suzuki, M. Yonokura, X.X. Bai, K. Kimura, S. Kubono, S. Shimoura, H.S. Xu, D. Hirata, Phys. Rev. Lett. 68, 1283 (1992).
- X. Gu, R.N. Boyd, M.M. Farrell, J.D. Kalen, C.A. Mitchell, J.J. Kolata, M. Belbot, K. Lamkin, K. Ashktorab, F.D. Becchetti, J. Brown, D. Robers, K. Kimura, I. Tanihata, K. Yoshida, M.S. Islam, Phys. Lett. B **343**, 31 (1994).
- Y. Mizoi, T. Fukuda, Y. Matsuyama, T. Miyachi, H. Miyatake, N. Aoi, N. Fukuda, M. Notani, Y.X. Watanabe, K. Yoneda, M. Ishihara, H. Sakurai, Y. Watanabe, A. Yoshida, Phys. Rev. C 62, 065801 (2000).
- R.N. Boyd, T. Paradellis, C. Rolfs, Comm. Nucl. Part. Phys. 22, 47 (1996).
- T. Rauscher, K. Grün, H. Krauss, H. Oberhummer, Phys. Rev. C 45, 1996 (1992).
- 11. P. Descouvement, Nucl. Phys. A 596, 285 (1996).
- P.R. Wrean, Thesis, California Institute of Technology (1998).
- P.R. Wrean, C.R. Brune, R.W. Kavanagh, Phys. Rev. C 49, 1205 (1994).
- 14. INFN LNS Activity Report 2002, pp. 147-151.